
Stanford CS 191W Senior Project:
Timing Attacks on Prompt Caching in Language Model APIs

Chenchen Gu 1 Xiang Lisa Li 1 Rohith Kuditipudi 1 Percy Liang 1 Tatsunori Hashimoto 1

Abstract
Prompt caching in large language models (LLMs)
enables cache hits between prompts with match-
ing prefixes, reducing response times. This results
in data-dependent timing variations, as cached
prompts are processed faster than non-cached
prompts, introducing the risk of side-channel tim-
ing attacks. For example, if the prompt cache is
shared across users, then an attacker could detect
cache hits from timing differences to learn infor-
mation about other users’ prompts, as a prompt
being cached implies that a user recently sent it.
We develop and conduct statistical audits to detect
prompt caching on real-world LLM API providers.
We detect cache sharing across users and organi-
zations in seven API providers, including OpenAI,
resulting in privacy leakage about users’ prompts.
We also extract model architecture information by
detecting caching. Namely, we find that OpenAI’s
embedding model is a decoder-only Transformer,
which was previously not publicly known.

1. Introduction
As Transformer large language models (LLMs) grow larger,
they become costlier and slower to run. In response, recent
work has developed optimizations to make LLM inference
and serving more efficient, such as prompt caching (Zheng
et al., 2024; Gim et al., 2024). In prompt caching, reuse
of the attention key-value (KV) cache across requests en-
ables cache hits between prompts with matching prefixes,
reducing response times. Recently, Anthropic and OpenAI
officially released prompt caching features in August and
October 2024, respectively.

However, prompt caching results in data-dependent timing
variations—cached prompts will be processed faster than
non-cached prompts, introducing the risk of side-channel
timing attacks. For example, an attacker could detect cache
hits by looking for fast API response times. If the prompt

1Stanford University. Correspondence to: Chenchen
Gu <cygu@cs.stanford.edu>, Tatsunori Hashimoto
<thashim@stanford.edu>.

cache is shared across users, then detecting cache hits can
leak private information about other users’ prompts, as a
prompt being cached implies that a user recently sent it. In
general, timing differences between cache hits and cache
misses have been widely exploited in computer security,
such as in the infamous Meltdown (Lipp et al., 2018) and
Spectre attacks (Kocher et al., 2019).

In this paper, we investigate timing attacks on prompt
caching in real-world LLM APIs. First, we develop a rigor-
ous auditing procedure using statistical hypothesis testing
to determine if an API is caching prompts and the level of
cache sharing across users. To do so, we construct and sam-
ple response times from two procedures: one that attempts
to produce cache hits, and one that produces cache misses.
Under the null hypothesis of no prompt caching, where only
cache misses are possible, these procedures produce identi-
cal distributions of times. Accordingly, we detect caching if
we find a statistically significant difference between these
distributions.

We conducted audits on 17 LLM API providers, detecting
prompt caching in eight API providers. In seven of these
providers, the prompt cache was shared across users and
organizations (when we conducted our audits in September
and October 2024). On these APIs, an attacker can detect
cache hits from timing differences to infer that another user
sent a prompt that shares a prefix with a given prompt.

We also extract model architecture information by detecting
caching. Cache hits between prompts that share a prefix but
have different suffixes are possible only in autoregressive
decoder-only Transformers, where each token attends only
to previous tokens. Therefore, detecting cache hits on such
prompts indicates that the model has a decoder-only archi-
tecture. Virtually all chat models are decoder-only, but top
open-weights embedding models include both encoder and
decoder models. As such, extracting architectural informa-
tion can be interesting for proprietary embedding models.
By detecting prompt prefix caching, we find that OpenAI’s
text-embedding-3-small has a decoder-only architecture,
which was previously not publicly known.

Responsible disclosure. In October 2024, we shared our
findings with each API provider in which we detected

1

https://www.anthropic.com/news/prompt-caching
https://openai.com/index/api-prompt-caching/


Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

prompt caching. After this disclosure, we waited 60 days
before publicly releasing our findings. During this window,
multiple providers made changes to mitigate vulnerabilities,
e.g., disabling cache sharing across organizations.

2. Preliminaries and Threat Model
First, we briefly describe prompt caching, our threat model,
and our terminology of API users and organizations.

2.1. Prompt caching

Recent works have proposed prompt caching in Transformer
(Vaswani et al., 2017) LLM serving by reusing the atten-
tion key-value (KV) cache across requests (Zheng et al.,
2024; Gim et al., 2024). In these methods, a prompt is
cached by storing the prompt’s attention KV cache. Then,
if a subsequent prompt has a matching prefix with a cached
prompt, the KV cache for the matching prefix can be re-
trieved from the cache, instead of computing the KV cache
from scratch. As a result, cache hits will tend to have a
faster time to first token (TTFT), which is the time taken
to process the prompt and generate the first response token.
In decoder-only Transformers, where each token only at-
tends to previous tokens, reusing the KV cache for matching
prefixes exactly preserves model behavior, even when the
prompt suffixes differ.

Several API providers have recently released prompt
caching features, including Anthropic, DeepSeek, Fireworks
AI, and OpenAI. These providers do not state technical
details of prompt caching, but all these providers enable
cache hits for (and only for) exact prefix matches between
prompts. For our purposes, the precise implementation of
prompt caching is largely unimportant. The properties of
prompt caching that we exploit are:

1. Cache hits occur on prefix matches between prompts.

2. Cache hits tend to be faster than cache misses.

2.2. Threat Model

We assume that an attacker can send arbitrary prompts to
the API (possibly subject to some maximum length) and
measure either client-side or server-side API response times,
or both. The client-side timing is obtained simply by mea-
suring the time elapsed between when the attacker sends the
API request and when the attacker receives the API response.
The server-side timing can be measured if it is contained
somewhere in the API response.1

In addition, we assume that the attacker is able to specif-

1We can measure server-side timing in more than half of the
APIs we test, often from undocumented fields in the HTTP headers
of the API response.

ically measure the time to first token, instead of the time
taken to generate the entire LLM output. An attacker can
achieve this by setting the maximum tokens parameter to
1, which restricts the LLM output to only contain 1 token.
This parameter is supported by most, if not all, real-world
LLM APIs. Alternatively, the attacker can enable response
streaming, where the server sends the LLM response in
chunks as soon as each chunk is generated, as opposed to
sending the entire response after the LLM has finished gen-
eration. Then, the attacker can approximate the time to first
token by measuring the response time of the first chunk,
which should contain only a few tokens at most. Response
streaming is supported by most real-world LLM APIs.

2.3. Terminology: Users and Organizations

To facilitate our discussion of privacy leakages in APIs, we
define our terminology of users and organizations. A user
is one person that uses the API. Each user has a unique
email/username and login password. An organization con-
tains many users, but shares a billing system, usage limits,
centralized membership management, etc. Organizations
are useful for collaborative environments, such as compa-
nies or research groups. Many, but not all, API providers
support organizations, although they are sometimes called
other terms, such as teams or accounts. For consistency
and simplicity, we refer to them all as organizations. We
differentiate between cache sharing within users of an orga-
nization versus across organizations, as they lead to different
severities of privacy leakage.

3. Auditing APIs for Prompt Caching
Some API providers have publicly stated that they perform
prompt caching, such as OpenAI and Anthropic, but some
API providers may be performing prompt caching without
announcing it. Also, even if a provider announces prompt
caching, they may not clarify whether the cache is shared
across users or organizations. Therefore, we propose and
conduct an audit procedure to determine whether an API
provider is caching prompts and the level of cache sharing
across users and organizations. Our audit uses statistical
hypothesis testing and outputs true p-values with respect to
the null hypothesis of no caching, allowing for guarantees
on the false positive rate.

3.1. Formulation: Statistical Hypothesis Testing

We formulate our audit as a statistical hypothesis test using
the following null and alternative hypotheses:

H0 : API is not caching prompts,
H1 : API is caching prompts.

2

https://www.anthropic.com/news/prompt-caching
https://api-docs.deepseek.com/news/news0802
https://docs.fireworks.ai/guides/prompt-caching
https://docs.fireworks.ai/guides/prompt-caching
https://openai.com/index/api-prompt-caching/


Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

The caching in H0 does not refer only to prompt caching
via the KV cache reuse described earlier. More verbosely,
H0 can be written as “when the API receives a prompt x,
the API does not store any information about x that affects
the response times of future prompts.”

To test these hypotheses, we construct procedures that at-
tempt to produce and measure the response times of cache
hits and cache misses. At a high level, to attempt to produce
a cache hit, we send the same prompt to the API multiple
times to try to cache the prompt, then we send the prompt
again to try to hit the cache. To produce a cache miss, we
simply send a random prompt.

Let Dhit and Dmiss be the distributions of response times
from these cache hit and cache miss procedures, respectively.
Under the null hypothesis H0 of no caching, Dhit = Dmiss,
as both procedures will produce only cache misses. In
contrast, under the alternative hypothesis H1 of caching,
we would expect the cache hit times to tend to be faster
than the cache miss times, so Dhit ̸= Dmiss. Now, we can
reformulate our hypotheses as

H0 : Dhit = Dmiss,

H1 : Dhit ̸= Dmiss.

Given this reformulation, to perform our audit, we first
sample response times using the cache hit and cache miss
procedures. Then, we run a statistical test for whether our
samples came from the same distribution, e.g., the two-
sample Kolmogorov-Smirnov test, producing a p-value with
respect to the null hypothesis of no caching.

3.2. Audit Procedure Details

Next, we describe our audit procedure in more detail.

Parameters. The procedure uses the following config-
uration parameters: PROMPTLENGTH, RANDOMSUF-
FIXLENGTH, NUMVICTIMREQUESTS, and NUMSAMPLES.
We explain the meanings of these parameters in the proce-
dure descriptions below.

Cache miss. To produce a cache miss, we simply gener-
ate a random prompt of PROMPTLENGTH tokens and send
it to the API. We set the temperature to 1 and maximum
output tokens to 1, so we can measure the time to first
token by simply measuring the total response time. The
prompt consists of PROMPTLENGTH random letters from
the English alphabet, lowercase and uppercase, each sep-
arated by space characters, e.g., “m x N j R”. Because
all commonly used byte pair encoding (BPE) tokenizers
(Gage, 1994; Sennrich et al., 2016) split on whitespace dur-
ing pre-tokenization, this results in a prompt that is exactly

PROMPTLENGTH tokens.2 Since the prompt consists of
random letters, there is a negligible probability that a no-
ticeable prefix has already been cached, so this procedure
accurately measures a baseline of cache miss times.

Cache hit. First, we generate a random prompt x with
PROMPTLENGTH tokens using the same procedure as
above. Then, from the “victim” user, we send x to the
API NUMVICTIMREQUESTS times consecutively, with the
goal of placing x into the prompt cache. We do not need to
measure the time to first token for the victim requests, so we
set the maximum output tokens to 100 (arbitrarily chosen)
and temperature to 1.

Then, we construct a modified prompt x′ by replacing the
last RANDOMSUFFIXLENGTH tokens of x with the same
number of random tokens. We generate this random suffix
using the same method as for random prompt generation. To
ensure that x and x′ have a shared prefix length of exactly
PROMPTLENGTH − RANDOMSUFFIXLENGTH tokens, we
ensure that the first token of the random suffix in x′ differs
from the token at that position in the original x. When
RANDOMSUFFIXLENGTH > 0, the purpose of the random
suffix is to test for cache hits between prompts with the same
prefix but different suffixes. Such cache hits are possible
only under attention KV cache reuse or a similar mechanism,
and not simply caching the final LLM outputs.

To attempt to produce a cache hit, from the “attacker” user,
we send x′ to the API and measure the time to first token,
as in the cache miss procedure. The choice of the victim
and attacker users determines the level of cache sharing
being audited. For example, the victim and attacker can
be set to the same user to determine if there is prompt
caching at all, whereas the victim and attacker can be set to
users in different organizations to test for cross-organization
caching. We will discuss the choice of victim and attacker
more thoroughly in the experiment setup.

Statistical testing. Putting these pieces together, to per-
form the audit, we collect NUMSAMPLES timings each from
the cache hit and cache miss procedures. We randomize
the order in which we collect the timings. Then, we test
for a statistically significant difference between the distribu-
tions of times from the two procedures. We use the SciPy
implementation (Virtanen et al., 2020) of the two-sample
Kolmogorov-Smirnov (KS) test (Hodges Jr, 1958), which
is a nonparametric test for equality of distributions. The
test statistic is the maximum difference between the empir-
ical cumulative distribution functions at any point. More

2Many APIs add a small number of tokens to the user prompt
due to the default system prompt, special tokens for prompt and
role formatting, etc. However, these additional tokens are unim-
portant for our procedure, as the number of additional tokens is
small and remains constant across prompts to a given model API.

3



Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

Table 1. Results of auditing APIs for prompt caching, conducted in September and October 2024. APIs are grouped by the level of cache
sharing detected and order alphabetically within each group. ✓ denotes caching was detected, ✗ denotes caching was not detected, a blank
space denotes that the test was not conducted because caching was not detected in an earlier stage, and — denotes that cache sharing
within an organization was not tested, either because the API did not support organizations or because we did not have access to the
organizations feature. For APIs where we detected caching sharing either within or across organizations, we report the average precision
for classifying times from the cache hit procedure. We report the average precision for client-side timing and server-side timing separately,
with — denoting that the given timing method is unavailable for that API.

Same prompt Same prefix, different suffix Avg. precision

Provider Model Same user Same user Within org. Cross org. Client Server

Azure text-embedding-3-small ✓ ✓ — ✓ 0.80 —
Deep Infra Llama 3.1 8B Instruct ✓ ✓ — ✓ 0.84 —
Fireworks Llama 3.1 8B Instruct ✓ ✓ ✓ ✓ 0.77 0.79
Lepton Llama 3.1 8B Instruct ✓ ✓ — ✓ 0.71 0.70
OpenAI text-embedding-3-small ✓ ✓ ✓ ✓ 0.78 0.79
Perplexity Llama 3.1 8B Instruct ✓ ✓ — ✓ 0.90 —
Replicate Llama 3 8B Instruct ✓ ✓ — ✓ — 1.00

Anthropic Claude 3 Haiku ✓ ✓ ✓ ✗ 0.84 —
OpenAI GPT-4o mini ✓ ✓ ✓ ✗ 0.79 0.86

Amazon Claude 3 Haiku ✗
Azure GPT-4o mini ✗
Cohere Command R ✗
Cohere embed-english-v3.0 ✗
DeepSeek DeepSeek Chat ✗
Google Gemini 1.5 Flash ✗
Google text-embedding-004 ✗
Groq Llama 3 8B Instruct ✗
Hyperbolic Llama 3.1 8B Instruct ✗
Mistral Mistral Nemo ✗
Mistral Mistral Embed ✗
OctoAI Llama 3.1 8B Instruct ✗
Together Llama 3.1 8B Instruct ✗

specifically, since we expect cache hits to be faster under the
alternative, we perform a one-sided test, so the test statistic
is the maximum difference in the direction of cache hits
being faster. The KS test outputs a p-value, which we can
use to reject or not reject the null hypothesis of no prompt
caching at a given significance level α.

4. Privacy Leakage in Real-World APIs
Next, we audit real-world LLM APIs to identify APIs that
cache prompts and determine the level of cache sharing
across users and organizations. Cache sharing results in a
privacy leakage, as an attacker could then detect hits from
timing data to learn information about other users’ prompts.

4.1. Audit Setup and Parameters

API providers and models. We audit 17 API providers:
Anthropic, Amazon Bedrock, Microsoft Azure OpenAI, Co-
here, Deep Infra, DeepSeek, Fireworks AI, Google, Groq,

Hyperbolic, Lepton AI, Mistral, OctoAI, OpenAI, Perplex-
ity, Replicate, and Together AI. The model APIs that we
audit for each provider are included in Table 1. For API
providers that primarily serve open-weights models, we au-
dit their Llama 3 or 3.1 8B Instruct API (Dubey et al., 2024).
For providers that serve proprietary models, we audit the
cheapest chat model in their most recent family of mod-
els. In addition, we audit APIs for proprietary embedding
models, where available. We do not audit APIs for open-
weights embedding models because all the ones we found
use an encoder-only Transformer architecture, making pre-
fix caching impossible, as each token attends to all other
tokens in the prompt.

Parameters and procedure. For our audits, we use
PROMPTLENGTH = 5000 and NUMSAMPLES = 250. We
run four stages of audits of increasing privacy leakage. At
each stage, we only continue to audit APIs if we detect
caching during the previous stage. We use a significance

4



Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

0.6 0.8 1.0 1.2 1.4
Time (s)

0

10

20

30

40

Fr
eq

ue
nc

y

Anthropic Claude-3 Haiku
within org., client time, v = 1

Cache hit
Cache miss

0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50
Time (s)

0

10

20

30

40

50

Fr
eq

ue
nc

y

Azure embedding-3-small
cross org., client time, v = 25

0.20 0.25 0.30 0.35 0.40
Time (s)

0

20

40

60

80

Fr
eq

ue
nc

y

Deep Infra Llama 3.1 8B
cross org., client time, v = 5

0.3 0.4 0.5 0.6 0.7
Time (s)

0

20

40

60

80

Fr
eq

ue
nc

y

Fireworks Llama 3.1 8B
cross org., client time, v = 1

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10
Time (s)

0

25

50

75

100

125

Fr
eq

ue
nc

y

Fireworks Llama 3.1 8B
cross org., server time, v = 1

0.2 0.4 0.6 0.8 1.0
Time (s)

0

20

40

60

80

100

Fr
eq

ue
nc

y

Lepton Llama 3.1 8B
cross org., client time, v = 5

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (s)

0

10

20

30

40

50

Fr
eq

ue
nc

y

OpenAI GPT-4o mini
within org., client time, v = 1

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Time (s)

0

10

20

30

40

Fr
eq

ue
nc

y

OpenAI GPT-4o mini
within org., server time, v = 1

0.15 0.20 0.25 0.30 0.35 0.40
Time (s)

0

10

20

30

40

50

Fr
eq

ue
nc

y

OpenAI embedding-3-small
cross org., client time, v = 25

0.05 0.10 0.15 0.20 0.25
Time (s)

0

20

40

60

Fr
eq

ue
nc

y

OpenAI embedding-3-small
cross org., server time, v = 25

0.20 0.25 0.30 0.35 0.40 0.45 0.50
Time (s)

0

20

40

60

80

100

Fr
eq

ue
nc

y

Perplexity Llama 3.1 8B
cross org., client time, v = 1

0.1 0.2 0.3 0.4 0.5
Time (s)

0

25

50

75

100

125

Fr
eq

ue
nc

y

Replicate Llama 3 8B
cross org., server time, v = 1

Figure 1. Histograms of response times from the cache hit and cache miss procedures in APIs where we detected caching. The distributions
of times are clearly distinguishable, with cache hits tending to be faster. Each histogram title states the API provider, model, level of cache
sharing (within org. or cross org.), timing source (client-side or server-side timing), and the NUMVICTIMREQUESTS used, denoted V.

level of α = 10−8.

To narrow down our list of providers, the first stage tests for
the simplest level of prompt caching:

1. Same prompt, same user. We test for exact prompt
matches by setting RANDOMSUFFIXLENGTH = 0.
We set the victim and attacker to be the same user,
and we set NUMVICTIMREQUESTS = 25.

In the remaining three stages, we test for cache hits between
prompts that have the same prefix but different suffix by
setting RANDOMSUFFIXLENGTH = 250. In each stage, we
test for increasing levels of cache sharing by appropriately
setting the victim and attacker:

2. Same user. The victim and attacker are the same user,
as in the first stage.

3. Within organization. The victim and attacker are
different users within the same organization. For APIs
without organizations, we skip this stage.

4. Cross organization. The victim and attacker are differ-
ent users in different organizations. For APIs without
organizations, the victim and attacker are simply dif-
ferent users.

In stages 2–4, to determine how many victim re-
quests are needed to detect caching, we run tests using
NUMVICTIMREQUESTS ∈ {1, 5, 25} in increasing order,
stopping after the first significant p-value. To account for

multiple testing, we perform a Bonferroni correction by
dividing the significance threshold for each individual test
by three. In addition, for APIs where both client-side and
server-side timing is available, we run tests using both tim-
ing methods and perform another Bonferroni correction,
dividing by two this time. For other APIs, we use whichever
timing method is available.

Cost per test. When NUMVICTIMREQUESTS = 25, one
test uses roughly 34 million prompt tokens. The number of
response tokens used is much smaller because we set the
maximum response tokens parameter. For the chat APIs we
audit, the prices per million prompt tokens are 0.05–0.25
USD, resulting in a cost per test of 1.69–8.44 USD. The
tests are cheaper when NUMVICTIMREQUESTS is smaller.

4.2. Audit Results

We conducted our audits in September and early October
2024 using clients located in California. The audit results
are shown in Table 1. We detected cache sharing across
organizations in seven API providers. This means that an
attacker can potentially learn information about other users’
prompts by detecting cache hits from timing data. To quan-
tify an attacker’s ability to detect if another user sent a
prompt that shares a prefix with a given prompt, we com-
pute the average precision (Zhu, 2004) for classifying times
from the cache hit procedure.3 Average precision is equal

3The cache hit procedure attempts to produce cache hits but
cannot guarantee cache hits (e.g., due to server routing), so some
times in the cache hit distribution may actually be cache misses.

5



Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

to the area under the precision-recall curve (the precision is
averaged over the recall scores). As shown in Table 1, the av-
erage precisions are mostly around a moderately high value
of 0.8. Figure 2 contains selected precision-recall curves,
showing that an attacker can achieve near perfect precision
up to moderate recall scores. Figure 4 in the appendix shows
the full set of relevant precision-recall curves.

Figure 1 displays histograms of times from the cache hit
and cache miss procedures. The distributions of times are
clearly distinguishable, with cache hits tending to be faster.
Each histogram title states the minimum NUMVICTIMRE-
QUESTS (denoted V in the titles) that resulted in a significant
p-value. In most of the APIs where we detected caching,
only NUMVICTIMREQUESTS = 1 was needed to detect
caching. Only the OpenAI and Azure text-embedding-
3-small APIs required NUMVICTIMREQUESTS = 25 to
achieve a significant p-value. In Appendix B, we report all
the p-values from our audits. In many APIs, the p-values
are many orders of magnitude smaller than our significance
level of α = 10−8. In all APIs where we detected caching,
both client-side and server-side timing (if available) resulted
in significant p-values.

In the Anthropic Claude 3 Haiku and OpenAI GPT-4o mini
APIs, we detected cache sharing within organizations, but
not across organizations. This exact level of cache sharing
is stated in their prompt caching documentations, confirm-
ing the efficacy of our audit procedure. Since OpenAI and
Anthropic officially document cache sharing within organi-
zations, we do not consider it a security vulnerability. Cache
sharing across organizations in the OpenAI text-embedding-
3-small API was a potential vulnerability, but has been
patched following our responsible disclosure prior to the
release of this paper.

Although DeepSeek has a prompt caching feature and re-
turns the number of cache hit tokens in API responses, which
we used to confirm that we produced cache hits, we were
unable to detect caching from response times. There was no
statistically significant difference between the distributions
of cache hit and cache miss times, even in two-sided tests.
DeepSeek states that the cache is not shared across users,
and we ran tests which confirmed that this is the case.

4.3. Ablations

We run ablations to determine the effects of
PROMPTLENGTH, RANDOMSUFFIXLENGTH, and
model size on the average precision, shown in Figure 3.

We use the APIs in which we detected cross-organization
caching with NUMVICTIMREQUESTS = 1, i.e., the Llama
3/3.1 8B Instruct APIs of Fireworks, Perplexity, and Repli-
cate. In Figures 3a and 3b, we vary the PROMPTLENGTH in
the same prompt and same prefix but different suffix settings,

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OpenAI GPT-4o mini
within org., server time, v = 1

Average precision = 0.86

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Perplexity Llama 3.1 8B
cross org., client time, v = 1

Average precision = 0.90

Figure 2. Selected precision-recall curves for distinguishing be-
tween times from the cache hit and cache miss procedures. Cache
hits are the positive class. The curves show that cache hits can be
detected with near perfect precision up to moderate recall scores.
Figure 4 in the appendix contains curves for other APIs.

respectively. When the PROMPTLENGTH is moderately
high (⪆ 1000), the average precision is relatively high and
stable. However, as the PROMPTLENGTH approaches zero,
the average precision decreases to random chance. In Fig-
ure 3c, we vary the RANDOMSUFFIXLENGTH while holding
the PROMPTLENGTH constant. As the length of the match-
ing prefix (PROMPTLENGTH−RANDOMSUFFIXLENGTH)
decreases, the average precision again decreases to random
chance. In Figure 3d, we vary the model size on the Fire-
works API, which supports all models in the Llama 3.1 and
3.2 families. We detected caching in all model sizes, with no
clear relationship between model size and average precision.

4.4. Prompt Extraction Attacks?

Given that cache hits can be detected via timing, one natural
idea is to extract other users’ prompts token by token using
a breadth-first search style approach. At each step, the goal
is to determine which continuation tokens are cached and
thus part of other users’ prompts.

However, we were unable to perform practical prompt ex-
traction attacks for multiple reasons. The branching factor
of the search is very large, with potentially thousands of
possible continuation tokens at each step. Therefore, a
successful attack requires extremely accurate detection of
cached tokens. Just one incorrect token causes complete
failure due to the exact prefix match required for a cache
hit. In preliminary experiments, we were unable to reliably
detect the presence of one additional cached token. Increas-
ing the number of tokens guessed at each step may increase
accuracy, but exponentially increases the branching factor.

Another idea is to make repeated measurements to boost
accuracy. However, this approach faces several difficulties.
To detect whether a prompt is cached, the attacker must
send the prompt to the API. Then, future measurements may
detect a cache hit not because another user sent the prompt,
but because the attacker themself sent it. At a minimum,

6



Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

0 1000 2000 3000 4000 5000
Prompt length (tokens)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

pr
ec

isi
on

(a) Vary prompt length (same prompt)

0 1000 2000 3000 4000 5000
Prompt length (tokens)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

pr
ec

isi
on

(b) Vary prompt length (same prefix, diff. suffix)

0 200 400 600 800 1000
Prefix match length (tokens)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

pr
ec

isi
on

(c) Vary prefix match length

1B 3B 8B 11B 70B 90B 405B
Llama model size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

pr
ec

isi
on

(d) Vary model size

Fireworks (client time) Fireworks (server time) Perplexity (client time) Replicate (server time) Random

Figure 3. Ablations on the effects of PROMPTLENGTH, RANDOMSUFFIXLENGTH, and model size on the average precision. In (a), we
vary PROMPTLENGTH in the range 5–5000, using RANDOMSUFFIXLENGTH = 0. (b) is the same as (a), except setting RANDOMSUF-
FIXLENGTH equal to 5% of each PROMPTLENGTH value. In (c), we set PROMPTLENGTH = 1000 and vary RANDOMSUFFIXLENGTH

in the range 0–975. We plot the length of the matching prefix, given by PROMPTLENGTH − RANDOMSUFFIXLENGTH. In (a) and (b),
when the PROMPTLENGTH is moderately high (⪆ 1000), the average precision is relatively high and stable. However, in (a)–(c), as the
prompt or prefix match length approaches zero, the average precision decreases to random chance. In (d), we test various model sizes in
the Llama 3.1 and 3.2 families, from 1B to 405B, using PROMPTLENGTH = 2000 and RANDOMSUFFIXLENGTH = 100. We detected
caching across all model sizes, with no clear relationship between model size and average precision.

for valid repeated measurements, the victim must have sent
the prompt between each measurement. Consequently, this
approach relies on the victim repeatedly sending a prompt
many times. Lastly, some APIs enable cache hits only in
certain conditions. For example, OpenAI enables cache hits
only in multiples of 128 tokens that exceed 1024 tokens,
making prompt extraction attacks all but impossible.

Note that we do not claim that prompt extraction attacks
are necessarily impossible. Such attacks face difficulties,
but future work may yet develop successful, practical at-
tacks. In addition, in more restricted sets of target prompts,
e.g., known prompt templates with places for users to enter
private personal information, it may be easier to overcome
these difficulties.

5. Extracting Architecture Information
In decoder-only Transformer models, reuse of the attention
KV cache enables cache hits between prompts with match-
ing prefixes, even if the suffixes differ, since each token
attends only to previous tokens. Such prefix caching is not
possible in encoder-only or encoder-decoder Transformer
models, where each token in the prompt attends to all other
tokens in the prompt. Therefore, detecting cache hits be-
tween prompts with the same prefix but different suffixes
indicates that the model cannot have a bidirectional encoder
architecture. Virtually all current Transformer-based chat
models are decoder-only, but top open-weights embedding
models include both encoder-only and decoder-only mod-
els. As such, extracting architectural information can be
interesting for proprietary embedding models.

In our audits (Table 1), we detected prompt caching in
OpenAI’s text-embedding-3-small API when prompts had
the same prefix but different suffixes. Assuming that text-

embedding-3-small is Transformer-based, this indicates
that text-embedding-3-small is a decoder-only Transformer.
This is new information, as OpenAI has not released any in-
formation about the architecture of their embedding models.

We confirm that when the prompt suffix is changed, the re-
turned embedding also changes, indicating that the caching
mechanism involves the attention KV cache, instead of sim-
ply caching embedding outputs. In addition, when we send
the exact same prompt multiple times, when the response
time is noticeably faster, indicating a cache hit, the returned
embedding differs slightly from the “normal” embedding
in most other responses. This behavior is consistent across
different random prompts. These differences are small, on
the order of 10−5 in each coordinate. We hypothesize that
these differences may arise if the reused KV cache is stored
in a lower precision, resulting in slight discrepancies when
the attention KV is computed from scratch in cache misses
versus when it is retrieved from the cache in cache hits.
Interestingly, when the response time is noticeably slower,
the returned embedding also differs slightly from both the
“normal” and cache hit embeddings. We do not have an
explanation for this behavior.

6. Mitigations
To prevent an API from leaking information about users’
prompts, we recommend disabling cache sharing across
organizations. This way, an attacker will not be able to
produce cache hits on prompts sent by users in different
organizations. Since it is unlikely that different users will
send prompts with the exact same prefix, this mitigation
should retain most of the performance improvements as
global prompt caching.

We believe that cache sharing within organizations is reason-

7



Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

able, as long as users are made aware of it. It is important
that users know how their data is handled and who could po-
tentially learn information about their data. This way, users
can make informed decisions about how they use an LLM
API and what information they are willing to send. For
example, if a company knows that an API shares the prompt
cache between different users within an organization, the
company may decide to create separate organizations for
different groups of employees to reduce the risk of unautho-
rized information access, e.g., a software engineer should
not be able to access sensitive legal documents. Overall, we
strongly encourage API providers to be transparent about
caching policies and how private user data is handled.

For information leakage that only requires caching within
the same user, such as extracting architecture information,
we believe that the only full mitigation is to disable prompt
caching. Note that leakage about model architecture is not a
privacy concern, so it does not necessarily need to be miti-
gated, although higher-severity attacks may be discovered
in the future. Another option is to intentionally delay the re-
sponse time for cache hits so that they look like cache misses.
This eliminates the benefits of prompt caching for users, but
API providers could still benefit, as cached prompts require
less GPU processing time. A partial mitigation to reduce
information leakage is to avoid providing server-side timing
data to users. Although we found that both client-side and
server-side timing can be used to detect cache hits, server-
side timing provides stronger signal, since it do not include
noise from network latency.

7. Related Work
Prompt caching. Many recent works have developed opti-
mizations for inference and serving of Transformer language
models. In particular, various methods involve reuse of the
attention KV cache, improving latency and throughput for
shared prompt prefixes (Kwon et al., 2023; Zheng et al.,
2024; Gim et al., 2024; Ye et al., 2024a;b; Qin et al., 2024;
Juravsky et al., 2024). Recall that we do not assume any
particular implementation of prompt caching in our attacks.
Indeed, we do not know technical details about the caching
mechanisms used by the APIs we audited. Other caching
methods do not preserve exact model behavior, such as re-
trieving cached responses for semantically similar prompts
(Bang, 2023) or reusing the KV cache even when the pre-
fixes do not exactly match (Gim et al., 2024; Yao et al., 2024;
Hu et al., 2024). We do not study such methods, but they are
also likely susceptible to similar cache timing attacks, and
our audit procedure can easily be adapted to detect other
types of caching.

Cache timing attacks. In computer security, many side-
channel timing attacks have extracted information by using

timing differences to distinguish between cache hits and
cache misses, e.g., in the CPU cache or web cache. For
example, cache timing attacks have been used to extract
AES keys (Bernstein, 2005; Osvik et al., 2006; Bonneau &
Mironov, 2006; Tromer et al., 2010; Gullasch et al., 2011;
Yarom et al., 2017), a user’s private web information (Felten
& Schneider, 2000; Bortz & Boneh, 2007; Van Goethem
et al., 2015), and sensitive data from other processes on a
machine (Percival, 2005; Yarom & Falkner, 2014; Liu et al.,
2015), as in the well-known Meltdown (Lipp et al., 2018)
and Spectre attacks (Kocher et al., 2019).

Attacks on language model APIs. Several recent works
have attacked language model APIs. Carlini et al. (2024) and
Finlayson et al. (2024) show that logits and logprobs leak in-
formation from an LLM API, including the model’s hidden
dimension size and final layer weights. Weiss et al. (2024)
partially extract encrypted and streamed LLM responses
by inferring and analyzing token lengths from packet sizes.
Carlini & Nasr (2024) and Wei et al. (2024) exploit specu-
lative decoding (Leviathan et al., 2023; Chen et al., 2023)
and similar methods to extract LLM responses with higher
success by measuring delays between packets.

Most related to our work is the concurrent work of Song et al.
(2024), which also studies timing attacks and privacy leak-
ages arising from prompt caching, including both KV cache
reuse and semantic caching. Our work differs in developing
an audit procedure that is practical and provides statistical
guarantees, using these audits to precisely identify differ-
ent levels of privacy leakage, and extracting information
about model architecture. Song et al. (2024) demonstrate
prompt extraction attacks in a simulated setting, but the at-
tack is run locally without network latency, uses knowledge
of the distribution of prompts, requires explicit clearing of
the cache to make repeated measurements, and makes an
average of 234 measurements for each extracted token. As
we discussed earlier, we believe that these simulated attacks
are currently unlikely to be real-world privacy threats.

8. Conclusion
As LLMs and other machine learning systems become more
widely deployed and used in the real world, it is increas-
ingly important to consider security and privacy aspects of
these systems. Towards that end, in this paper, we show
that prompt caching in LLM APIs leaks private and propri-
etary information through timing differences. We perform
rigorous statistical audits on real-world APIs, finding that
multiple APIs leak information about other users’ prompts.

Cache timing attacks have been extensively studied in the
computer security literature, and we simply apply them to
the new domain of prompt caching in LLM APIs. More
broadly, we believe that leveraging established security re-

8



Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

search will be helpful in developing secure LLM systems.
We hope that future work will continue to evaluate and au-
dit the security and privacy of machine learning systems,
ensuring their robustness and trustworthiness.

Acknowledgments
CG was supported by the Stanford CURIS program. XL
was supported by a Two Sigma PhD Fellowship. PL was
supported by NSF Award Grant no. 1805310 and an Open
Philanthropy Project Award. TH was supported by gifts
from Open Philanthropy, Amazon, Google, Meta, and a
grant under the NSF CAREER IIS-2338866.

Conflicts of Interest
PL is a co-founder of Together AI. However, this work
was done in his Stanford capacity. The methods, providers
audited, and results were not influenced by or shared with
Together prior to the public release of this paper. All API
providers were audited using the same procedure, including
Together. None of the other authors have conflicts of interest
with the providers audited in this paper.

References
Bang, F. GPTCache: An open-source semantic cache

for LLM applications enabling faster answers and cost
savings. In Tan, L., Milajevs, D., Chauhan, G., Gwin-
nup, J., and Rippeth, E. (eds.), Proceedings of the 3rd
Workshop for Natural Language Processing Open Source
Software (NLP-OSS 2023), pp. 212–218, Singapore, De-
cember 2023. Association for Computational Linguis-
tics. doi: 10.18653/v1/2023.nlposs-1.24. URL https:
//aclanthology.org/2023.nlposs-1.24.

Bernstein, D. J. Cache-timing attacks on aes.
2005. URL https://cr.yp.to/antiforgery/
cachetiming-20050414.pdf.

Bonneau, J. and Mironov, I. Cache-collision timing attacks
against aes. In Cryptographic Hardware and Embedded
Systems-CHES 2006: 8th International Workshop, Yoko-
hama, Japan, October 10-13, 2006. Proceedings 8, pp.
201–215. Springer, 2006.

Bortz, A. and Boneh, D. Exposing private information
by timing web applications. In Proceedings of the 16th
international conference on World Wide Web, pp. 621–
628, 2007.

Carlini, N. and Nasr, M. Remote timing attacks on
efficient language model inference. arXiv preprint
arXiv:2410.17175, 2024.

Carlini, N., Paleka, D., Dvijotham, K. D., Steinke, T.,

Hayase, J., Cooper, A. F., Lee, K., Jagielski, M., Nasr,
M., Conmy, A., Wallace, E., Rolnick, D., and Tramèr,
F. Stealing part of a production language model. In
Salakhutdinov, R., Kolter, Z., Heller, K., Weller, A.,
Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.), Pro-
ceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 5680–5705. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/carlini24a.html.

Chen, C., Borgeaud, S., Irving, G., Lespiau, J.-B., Sifre,
L., and Jumper, J. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Felten, E. W. and Schneider, M. A. Timing attacks on
web privacy. In Proceedings of the 7th ACM Conference
on Computer and Communications Security, pp. 25–32,
2000.

Finlayson, M., Ren, X., and Swayamdipta, S. Logits of API-
protected LLMs leak proprietary information. In First
Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=oRcYFm8vyB.

Gage, P. A new algorithm for data compression. The C
Users Journal, 12(2):23–38, 1994.

Gim, I., Chen, G., Lee, S.-s., Sarda, N., Khandelwal, A.,
and Zhong, L. Prompt cache: Modular attention reuse for
low-latency inference. Proceedings of Machine Learning
and Systems, 6:325–338, 2024.

Gullasch, D., Bangerter, E., and Krenn, S. Cache games–
bringing access-based cache attacks on aes to practice.
In 2011 IEEE Symposium on Security and Privacy, pp.
490–505. IEEE, 2011.

Hodges Jr, J. The significance probability of the smirnov
two-sample test. Arkiv för matematik, 3(5):469–486,
1958.

Hu, J., Huang, W., Wang, H., Wang, W., Hu, T., Zhang,
Q., Feng, H., Chen, X., Shan, Y., and Xie, T. Epic: Ef-
ficient position-independent context caching for serving
large language models. arXiv preprint arXiv:2410.15332,
2024.

Juravsky, J., Brown, B., Ehrlich, R., Fu, D. Y., Ré, C., and
Mirhoseini, A. Hydragen: High-throughput llm inference
with shared prefixes. arXiv preprint arXiv:2402.05099,
2024.

9

https://aclanthology.org/2023.nlposs-1.24
https://aclanthology.org/2023.nlposs-1.24
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://proceedings.mlr.press/v235/carlini24a.html
https://proceedings.mlr.press/v235/carlini24a.html
https://openreview.net/forum?id=oRcYFm8vyB
https://openreview.net/forum?id=oRcYFm8vyB


Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

Kocher, P., Horn, J., Fogh, A., , Genkin, D., Gruss, D., Haas,
W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T.,
Schwarz, M., and Yarom, Y. Spectre attacks: Exploit-
ing speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, pp. 611–626,
2023.

Leviathan, Y., Kalman, M., and Matias, Y. Fast inference
from transformers via speculative decoding. In Inter-
national Conference on Machine Learning, pp. 19274–
19286. PMLR, 2023.

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W.,
Fogh, A., Horn, J., Mangard, S., Kocher, P., Genkin,
D., Yarom, Y., and Hamburg, M. Meltdown: Reading
kernel memory from user space. In 27th USENIX Security
Symposium (USENIX Security 18), 2018.

Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. Last-
level cache side-channel attacks are practical. In 2015
IEEE symposium on security and privacy, pp. 605–622.
IEEE, 2015.

Osvik, D. A., Shamir, A., and Tromer, E. Cache attacks and
countermeasures: the case of aes. In Topics in Cryptology–
CT-RSA 2006: The Cryptographers’ Track at the RSA
Conference 2006, San Jose, CA, USA, February 13-17,
2005. Proceedings, pp. 1–20. Springer, 2006.

Percival, C. Cache missing for fun and profit. BSDCan
Ottawa, 2005. URL https://www.daemonology.
net/papers/htt.pdf.

Qin, R., Li, Z., He, W., Zhang, M., Wu, Y., Zheng,
W., and Xu, X. Mooncake: A kvcache-centric disag-
gregated architecture for llm serving. arXiv preprint
arXiv:2407.00079, 2024.

Sennrich, R., Haddow, B., and Birch, A. Neural machine
translation of rare words with subword units. In Erk,
K. and Smith, N. A. (eds.), Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725,
Berlin, Germany, August 2016. Association for Compu-
tational Linguistics. doi: 10.18653/v1/P16-1162. URL
https://aclanthology.org/P16-1162.

Song, L., Pang, Z., Wang, W., Wang, Z., Wang, X., Chen,
H., Song, W., Jin, Y., Meng, D., and Hou, R. The early
bird catches the leak: Unveiling timing side channels in
llm serving systems. arXiv preprint arXiv:2409.20002,
2024.

Tromer, E., Osvik, D. A., and Shamir, A. Efficient cache
attacks on aes, and countermeasures. Journal of Cryptol-
ogy, 23:37–71, 2010.

Van Goethem, T., Joosen, W., and Nikiforakis, N. The clock
is still ticking: Timing attacks in the modern web. In
Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pp. 1382–1393,
2015.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I.
Attention is all you need. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.
pdf.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A.,
Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors. SciPy
1.0: Fundamental Algorithms for Scientific Computing
in Python. Nature Methods, 17:261–272, 2020. doi:
10.1038/s41592-019-0686-2.

Wei, J., Abdulrazzag, A., Zhang, T., Muursepp, A., and
Saileshwar, G. Privacy risks of speculative decoding in
large language models. arXiv preprint arXiv:2411.01076,
2024.

Weiss, R., Ayzenshteyn, D., and Mirsky, Y. What was
your prompt? a remote keylogging attack on AI assis-
tants. In 33rd USENIX Security Symposium (USENIX
Security 24), pp. 3367–3384, Philadelphia, PA, August
2024. USENIX Association. ISBN 978-1-939133-44-1.
URL https://www.usenix.org/conference/
usenixsecurity24/presentation/weiss.

Yao, J., Li, H., Liu, Y., Ray, S., Cheng, Y., Zhang, Q., Du,
K., Lu, S., and Jiang, J. Cacheblend: Fast large language
model serving with cached knowledge fusion. arXiv
preprint arXiv:2405.16444, 2024.

Yarom, Y. and Falkner, K. {FLUSH+ RELOAD}: A high
resolution, low noise, l3 cache {Side-Channel} attack. In
23rd USENIX security symposium (USENIX security 14),
pp. 719–732, 2014.

10

https://www.daemonology.net/papers/htt.pdf
https://www.daemonology.net/papers/htt.pdf
https://aclanthology.org/P16-1162
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.usenix.org/conference/usenixsecurity24/presentation/weiss
https://www.usenix.org/conference/usenixsecurity24/presentation/weiss


Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

Yarom, Y., Genkin, D., and Heninger, N. Cachebleed: a
timing attack on openssl constant-time rsa. Journal of
Cryptographic Engineering, 7:99–112, 2017.

Ye, L., Tao, Z., Huang, Y., and Li, Y. ChunkAttention:
Efficient self-attention with prefix-aware KV cache and
two-phase partition. In Ku, L.-W., Martins, A., and Sriku-
mar, V. (eds.), Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 11608–11620, Bangkok, Thailand,
August 2024a. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.acl-long.623. URL https:
//aclanthology.org/2024.acl-long.623.

Ye, Z., Lai, R., Lu, B.-R., Lin, C.-Y., Zheng, S., Chen,
L., Chen, T., and Ceze, L. Cascade inference: Mem-
ory bandwidth efficient shared prefix batch decoding,
February 2024b. URL https://flashinfer.ai/
2024/02/02/cascade-inference.html.

Zheng, L., Yin, L., Xie, Z., Sun, C., Huang, J., Yu, C. H.,
Cao, S., Kozyrakis, C., Stoica, I., Gonzalez, J. E., Barrett,
C., and Sheng, Y. SGLang: Efficient execution of struc-
tured language model programs. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/
forum?id=VqkAKQibpq.

Zhu, M. Recall, precision and average precision. Depart-
ment of Statistics and Actuarial Science, University of
Waterloo, Waterloo, 2(30):6, 2004.

11

https://aclanthology.org/2024.acl-long.623
https://aclanthology.org/2024.acl-long.623
https://flashinfer.ai/2024/02/02/cascade-inference.html
https://flashinfer.ai/2024/02/02/cascade-inference.html
https://openreview.net/forum?id=VqkAKQibpq
https://openreview.net/forum?id=VqkAKQibpq


Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

A. Precision-Recall Curves
Figure 4 shows precision-recall curves for distinguishing between cache hit and cache miss times in APIs where we detected
caching in our audits (Table 1).

B. P-values from Audits
We report all the p-values from our audits on APIs. Table 2 contains p-values from stage 1 of our audits: same prompt, same
user. Table 3 contains p-values from stage 2 of our audits: same prefix but different suffix, same user. Table 4 contains
p-values from stage 3 of our audits: same prefix but different suffix, within organization. Table 5 contains p-values from
stage 4 of our audits: same prefix but different suffix, cross organization.

12



Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Anthropic Claude-3 Haiku
within org., client time, v = 1

Average precision = 0.84

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Azure embedding-3-small
cross org., client time, v = 25

Average precision = 0.80

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Deep Infra Llama 3.1 8B
cross org., client time, v = 5

Average precision = 0.84

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Fireworks Llama 3.1 8B
cross org., client time, v = 1

Average precision = 0.77

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Fireworks Llama 3.1 8B
cross org., server time, v = 1

Average precision = 0.79

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Lepton Llama 3.1 8B
cross org., client time, v = 5

Average precision = 0.71

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Lepton Llama 3.1 8B
cross org., server time, v = 5

Average precision = 0.70

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OpenAI GPT-4o mini
within org., client time, v = 1

Average precision = 0.79

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OpenAI GPT-4o mini
within org., server time, v = 1

Average precision = 0.86

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OpenAI embedding-3-small
cross org., client time, v = 25

Average precision = 0.78

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

OpenAI embedding-3-small
cross org., server time, v = 25

Average precision = 0.79

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Perplexity Llama 3.1 8B
cross org., client time, v = 1

Average precision = 0.90

0.0 0.2 0.4 0.6 0.8 1.0
Recall

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Replicate Llama 3 8B
cross org., server time, v = 1

Average precision = 1.00

Figure 4. Precision-recall curves for distinguishing between times produced by the cache hit and cache miss procedures in APIs where we
detected caching in our audits (Table 1). Cache hits are the positive class, and cache misses are the negative class. The curves show that
cache hits can be detected with near perfect precision up to moderate recall scores. Note that our cache hit procedure attempts to produce
cache hits but cannot guarantee cache hits (e.g., due to server routing), so some times in the cache hit distribution may actually be cache
misses, which would hurt recall scores.

13



Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

Table 2. P-values from stage 1 of our audits: same prompt, same user. Each column shows one combination of NUMVICTIMREQUESTS

and timing source (client-side or server-side timing). Green indicates a significant p-value, after performing the appropriate Bonferroni
corrections. Red indicates a p-value that is not significant. — indicates that the given timing source was not available for the API. APIs
are grouped by whether caching was detected in this stage and sorted alphabetically within the groups.

NUMVICTIMREQUESTS
25

Provider Model Client Server

Anthropic Claude 3 Haiku 7.8e-21 —
Azure text-embedding-3-small 1.7e-42 —
Deep Infra Llama 3.1 8B Instruct 9.5e-116 —
Fireworks Llama 3.1 8B Instruct 2.0e-80 4.7e-109
Lepton Llama 3.1 8B Instruct 2.2e-138 2.2e-138
OpenAI GPT-4o mini 2.4e-66 2.9e-105
OpenAI text-embedding-3-small 7.6e-09 2.3e-10
Perplexity Llama 3.1 8B Instruct 1.9e-90 —
Replicate Llama 3 8B Instruct — 2.2e-140

Amazon Claude 3 Haiku 0.27 0.51
Azure GPT-4o mini 0.95 —
Cohere Command R 0.62 0.72
Cohere embed-english-v3.0 0.41 0.56
DeepSeek DeepSeek Chat 0.75 —
Google Gemini 1.5 Flash 0.17 0.20
Google text-embedding-004 0.20 0.24
Groq Llama 3 8B Instruct 0.41 0.51
Hyperbolic Llama 3.1 8B Instruct 0.72 —
Mistral Mistral Nemo 0.56 0.96
Mistral Mistral Embed 0.67 0.91
OctoAI Llama 3.1 8B Instruct 0.32 0.27
Together Llama 3.1 8B Instruct 0.51 0.96

Table 3. P-values from stage 2 of our audits: same prefix but different suffix, same user. Each column shows one combination of
NUMVICTIMREQUESTS and timing source (client-side or server-side timing). Green indicates a significant p-value, after performing
the appropriate Bonferroni corrections. Red indicates a p-value that is not significant. — indicates that the given timing source was not
available for the API. A blank cell indicates that the given value of NUMVICTIMREQUESTS was not tested because caching was detected
in the API using a smaller value of NUMVICTIMREQUESTS. Caching was detected in all APIs audited in this stage. APIs are sorted
alphabetically.

NUMVICTIMREQUESTS
1 5 25

Provider Model Client Server Client Server Client Server

Anthropic Claude 3 Haiku 9.6e-37 —
Azure text-embedding-3-small 0.20 — 6.0e-04 — 6.9e-42 —
Deep Infra Llama 3.1 8B Instruct 0.03 — 5.0e-22 —
Fireworks Llama 3.1 8B Instruct 4.3e-15 5.0e-33
Lepton Llama 3.1 8B Instruct 1.00 0.96 7.7e-10 7.7e-10
OpenAI GPT-4o mini 9.5e-27 1.5e-39
OpenAI text-embedding-3-small 0.03 0.03 0.10 0.17 2.6e-12 4.3e-15
Perplexity Llama 3.1 8B Instruct 5.4e-68 —
Replicate Llama 3 8B Instruct — 8.6e-150

14



Stanford CS 191W Senior Project: Timing Attacks on Prompt Caching in Language Model APIs

Table 4. P-values from stage 3 of our audits: same prefix but different suffix, within organization. Each column shows one combination of
NUMVICTIMREQUESTS and timing source (client-side or server-side timing). Green indicates a significant p-value, after performing
the appropriate Bonferroni corrections. Red indicates a p-value that is not significant. — indicates that the given timing source was not
available for the API. A blank cell indicates that the given value of NUMVICTIMREQUESTS was not tested because caching was detected
in the API using a smaller value of NUMVICTIMREQUESTS. Caching was detected in all APIs audited in this stage. APIs are sorted
alphabetically.

NUMVICTIMREQUESTS
1 5 25

Provider Model Client Server Client Server Client Server

Anthropic Claude 3 Haiku 1.7e-31 —
Fireworks Llama 3.1 8B Instruct 1.3e-21 5.2e-32
OpenAI GPT-4o mini 1.1e-19 4.6e-34
OpenAI text-embedding-3-small 0.27 0.14 0.27 0.27 8.2e-14 8.2e-14

Table 5. P-values from stage 4 of our audits: same prefix but different suffix, cross organization. Each column shows one combination of
NUMVICTIMREQUESTS and timing source (client-side or server-side timing). Green indicates a significant p-value, after performing
the appropriate Bonferroni corrections. Red indicates a p-value that is not significant. — indicates that the given timing source was not
available for the API. A blank cell indicates that the given value of NUMVICTIMREQUESTS was not tested because caching was detected
in the API using a smaller value of NUMVICTIMREQUESTS. APIs are grouped by whether caching was detected in this stage and sorted
alphabetically within the groups.

NUMVICTIMREQUESTS
1 5 25

Provider Model Client Server Client Server Client Server

Azure text-embedding-3-small 0.46 — 0.02 — 1.3e-21 —
Deep Infra Llama 3.1 8B Instruct 6.5e-05 — 7.5e-38 —
Fireworks Llama 3.1 8B Instruct 9.0e-17 5.2e-32
Lepton Llama 3.1 8B Instruct 0.12 0.07 1.2e-10 1.4e-09
OpenAI text-embedding-3-small 0.41 0.36 0.20 0.08 1.1e-19 1.1e-19
Perplexity Llama 3.1 8B Instruct 5.3e-74 —
Replicate Llama 3 8B Instruct — 8.6e-150

Anthropic Claude 3 Haiku 0.24 — 0.77 — 0.87 —
OpenAI GPT-4o mini 0.41 0.20 0.41 0.62 0.41 0.94

15


